• 105473

    文章

  • 803

    评论

  • 12

    友链

  • 最近新加了换肤功能,大家多来逛逛吧~~~~
  • 喜欢这个网站的朋友可以加一下QQ群,我们一起交流技术。

Pandas基本属性和方法

撸了今年阿里、腾讯和美团的面试,我有一个重要发现.......>>

Series基本功能:

  • axes 返回行轴标签列表。

  • dtype 返回对象的数据类型(dtype)。

  • empty 如果系列为空,则返回True。

  • ndim 返回底层数据的维数,默认定义:1。

  • size 返回基础数据中的元素数。

  • values 将系列作为ndarray返回。

  • head() 返回前n行。

  • tail() 返回最后n行。

DataFrame基本功能

  • T 转置行和列。

  • axes 返回一个列,行轴标签和列轴标签作为唯一的成员。

  • dtypes 返回此对象中的数据类型(dtypes)。

  • empty 如果NDFrame完全为空[无项目],则返回为True; 如果任何轴的长度为0。

  • ndim 轴/数组维度大小。

  • shape 返回表示DataFrame的维度的元组。

  • size NDFrame中的元素数。

  • values NDFrame的Numpy表示。

  • head()返回开头前n行。

  • tail()返回最后n行。

T(转置)

返回DataFrame的转置。行和列将交换。

实例:

import pandas as pd
import numpy as np

# Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

# Create a DataFrame
df = pd.DataFrame(d)
print ("The transpose of the data series is:")
print df.T

执行上面示例代码,得到以下结果 -

The transpose of the data series is:
         0     1       2      3      4      5       6
Age      25    26      25     23     30     29      23
Name     Tom   James   Ricky  Vin    Steve  Minsu   Jack
Rating   4.23  3.24    3.98   2.56   3.2    4.6     3.8

axes

返回行轴标签和列轴标签列表

实例1:

#Create a series with 100 random numbers
s = pd.Series(np.random.randn(4))
print ("The axes are:")
print s.axes

执行上面示例代码,得到以下输出结果 -

The axes are:
[RangeIndex(start=0, stop=4, step=1)]

实例2:

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("Row axis labels and column axis labels are:")
print df.axes

执行上面示例代码,得到以下结果 -

Row axis labels and column axis labels are:

[RangeIndex(start=0, stop=7, step=1), Index([u'Age', u'Name', u'Rating'],
dtype='object')]

dtypes

返回每列的数据类型

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("The data types of each column are:")
print df.dtypes

执行上面示例代码,得到以下结果 -

The data types of each column are:
Age     int64
Name    object
Rating  float64
dtype: object

empty

返回布尔值,表示对象是否为空; 返回True表示对象为空。

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("Is the object empty?")
print df.empty

执行上面示例代码,得到以下结果 -

Is the object empty?
False

ndim

返回对象的维数。

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The dimension of the object is:")
print df.ndim

执行上面示例代码,得到以下结果 -

Our object is:
      Age    Name     Rating
0     25     Tom      4.23
1     26     James    3.24
2     25     Ricky    3.98
3     23     Vin      2.56
4     30     Steve    3.20
5     29     Minsu    4.60
6     23     Jack     3.80

The dimension of the object is:
2

shape

其中a表示行数,b表示列数。

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The shape of the object is:")
print df.shape

执行上面示例代码,得到以下结果 -

Our object is:
   Age   Name    Rating
0  25    Tom     4.23
1  26    James   3.24
2  25    Ricky   3.98
3  23    Vin     2.56
4  30    Steve   3.20
5  29    Minsu   4.60
6  23    Jack    3.80

The shape of the object is:
(7, 3)

size

返回元素数。

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The total number of elements in our object is:")
print df.size

执行上面示例代码,得到以下结果 -

Our object is:
    Age   Name    Rating
0   25    Tom     4.23
1   26    James   3.24
2   25    Ricky   3.98
3   23    Vin     2.56
4   30    Steve   3.20
5   29    Minsu   4.60
6   23    Jack    3.80

The total number of elements in our object is:
21

values

以数组形式返回实际数据值。

实例1:

以数组形式返回系列中的实际数据值。

#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print ("The actual data series is:")
print s.values

执行上面示例代码,得到以下结果 -

The actual data series is:
[ 1.78737302 -0.60515881 0.18047664 -0.1409218 ]

实例2:

将DataFrame中的实际数据作为NDarray返回

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("The actual data in our data frame is:")
print df.values

执行上面示例代码,得到以下结果 -

The actual data in our data frame is:
[[25 'Tom' 4.23]
[26 'James' 3.24]
[25 'Ricky' 3.98]
[23 'Vin' 2.56]
[30 'Steve' 3.2]
[29 'Minsu' 4.6]
[23 'Jack' 3.8]]

head()和tail()

要查看DataFrame对象的小样本,可使用head()和tail()方法。head()返回前n行(观察索引值)。显示元素的默认数量为5,但可以传递自定义数字值。tail()返回最后n行(观察索引值)。显示元素的默认数量为5.

实例:

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame
df = pd.DataFrame(d)
print ("Our data frame is:")
print (df)
print ("The first two rows of the data frame is:")
print (df.head(2))
print ("The last two rows of the data frame is:")
print (df.tail(2))

输出:

Our data frame is:
    Name  Age  Rating
0    Tom   25    4.23
1  James   26    3.24
2  Ricky   25    3.98
3    Vin   23    2.56
4  Steve   30    3.20
5  Minsu   29    4.60
6   Jack   23    3.80
The first two rows of the data frame is:
    Name  Age  Rating
0    Tom   25    4.23
1  James   26    3.24
The last two rows of the data frame is:
    Name  Age  Rating
5  Minsu   29     4.6
6   Jack   23     3.8

695856371Web网页设计师②群 | 喜欢本站的朋友可以收藏本站,或者加入我们大家一起来交流技术!

0条评论

Loading...


自定义皮肤 主体内容背景
打开支付宝扫码付款购买视频教程
遇到问题联系客服QQ:419400980
注册梁钟霖个人博客